Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Immunol ; 212(3): 389-396, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117799

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19. In longitudinal paired analysis, MAIT cells initially rebounded numerically and phenotypically in most patients at 4 mo postrelease from the hospital. However, the rebounding MAIT cells displayed signs of persistent activation with elevated expression of CD69, CD38, and HLA-DR. Although MAIT cell function was restored in many patients, a subgroup displayed a predominantly PD-1high functionally impaired MAIT cell pool. This profile was associated with poor expression of IFN-γ and granzyme B in response to IL-12 + L-18 and low levels of polyfunctionality. Unexpectedly, although the overall T cell counts recovered, normalization of the MAIT cell pool failed at 9-mo follow-up, with a clear decline in MAIT cell numbers and a further increase in PD-1 levels. Together, these results indicate an initial transient period of inconsistent recovery of MAIT cells that is not sustained and eventually fails. Persisting MAIT cell impairment in previously hospitalized patients with COVID-19 may have consequences for antimicrobial immunity and inflammation and could potentially contribute to post-COVID-19 health problems.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Antígenos HLA-DR , Inflamação
2.
Acta Anaesthesiol Scand ; 67(8): 994-1017, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345870

RESUMO

The set of guidelines for good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents was developed following an international consensus conference in Copenhagen in 1996 (Viby-Mogensen et al., Acta Anaesthesiol Scand 1996, 40, 59-74); the guidelines were later revised and updated following the second consensus conference in Stockholm in 2005 (Fuchs-Buder et al., Acta Anaesthesiol Scand 2007, 51, 789-808). In view of new devices and further development of monitoring technologies that emerged since then, (e.g., electromyography, three-dimensional acceleromyography, kinemyography) as well as novel compounds (e.g., sugammadex) a review and update of these recommendations became necessary. The intent of these revised guidelines is to continue to help clinical researchers to conduct high-quality work and advance the field by enhancing the standards, consistency, and comparability of clinical studies. There is growing awareness of the importance of consensus-based reporting standards in clinical trials and observational studies. Such global initiatives are necessary in order to minimize heterogeneous and inadequate data reporting and to improve clarity and comparability between different studies and study cohorts. Variations in definitions of endpoints or outcome variables can introduce confusion and difficulties in interpretation of data, but more importantly, it may preclude building of an adequate body of evidence to achieve reliable conclusions and recommendations. Clinical research in neuromuscular pharmacology and physiology is no exception.


Assuntos
Bloqueio Neuromuscular , Bloqueadores Neuromusculares , Humanos , Bloqueadores Neuromusculares/farmacologia , Sugammadex , Bloqueio Neuromuscular/métodos
3.
Eur J Anaesthesiol ; 40(8): 568-577, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37232391

RESUMO

BACKGROUND: Apnoeic oxygenation with high-flow nasal oxygen prolongs the safe apnoeic period during induction of general anaesthesia. However, central haemodynamic effects and the characteristics of central gaseous exchange remain unexplored. OBJECTIVE: To describe mean pulmonary arterial pressure along with arterial and mixed venous blood gases and central haemodynamic parameters during apnoeic oxygenation with low-flow and high-flow nasal oxygen in pigs. DESIGN: Experimental crossover study. SETTING: Animal study of 10 healthy Swedish landrace pigs at Karolinska Institutet, Sweden, April-May 2021. INTERVENTION: The pigs were anaesthetised, their tracheas intubated and their pulmonary arteries catheterised. The animals were preoxygenated and paralysed before apnoea. Apnoeic periods between 45 and 60 min were implemented with either 70 or 10 l min -1 100% O 2 delivered via nasal catheters. In addition, seven animals underwent an apnoea without fresh gas flow. Cardiopulmonary parameters and blood gases were measured repeatedly. MAIN OUTCOME MEASURES: Mean pulmonary arterial pressure during apnoeic oxygenation with high-flow and low-flow oxygen. RESULTS: Nine pigs completed two apnoeic periods of at least 45 min with a Pa O 2 not lower than 13 kPa. The mean pulmonary arterial pressure increased during 45 min of apnoea, from 18 ±â€Š1 to 33 ±â€Š2 mmHg and 18 ±â€Š1 to 35 ±â€Š2 mmHg, at 70 and 10 l min -1 O 2 , respectively ( P  < 0.001); there was no difference between the groups ( P  = 0.87). The Pa CO 2 increased by 0.48 ±â€Š0.07 and 0.52 ±â€Š0.04 kPa min -1 , at 70 and 10 l min -1 O 2 , respectively; there was no difference between the groups ( P  = 0.22). During apnoea without fresh gas flow, the SpO 2 declined to less than 85% after 155 ±â€Š11 s. CONCLUSION: During apnoeic oxygenation in pigs, the mean pulmonary arterial pressure increased two-fold and Pa CO 2 five-fold after 45 min, while the arterial oxygen levels were maintained over 13 kPa, irrespective of high-flow or low-flow oxygen.


Assuntos
Apneia , Oxigênio , Suínos , Animais , Apneia/terapia , Estudos Cross-Over , Respiração Artificial , Hemodinâmica
4.
Respir Res ; 24(1): 62, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829233

RESUMO

BACKGROUND: COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS: We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS: We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS: This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , COVID-19/complicações , Proteômica , Inflamação/complicações , Biomarcadores
5.
Anesthesiology ; 138(1): 13-41, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520073

RESUMO

These practice guidelines provide evidence-based recommendations on the management of neuromuscular monitoring and antagonism of neuromuscular blocking agents during and after general anesthesia. The guidance focuses primarily on the type and site of monitoring and the process of antagonizing neuromuscular blockade to reduce residual neuromuscular blockade.


Assuntos
Anestésicos , Recuperação Demorada da Anestesia , Bloqueio Neuromuscular , Bloqueadores Neuromusculares , Humanos , Anestesiologistas , Monitoração Neuromuscular
6.
BMJ Open ; 12(9): e062007, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127087

RESUMO

INTRODUCTION: Postoperative cognitive decline affects cognitive domains such as executive functions, memory, concentration and information processing. The analogue neuropsychological test developed by the International Study Group of Postoperative Cognitive Dysfunction (ISPOCD) is a well-established test for assessing cognitive performance. However, analogue tests are time-consuming, rarely cost-effective and can be at risk of administration bias. Digital solutions are comparable to analogue ones, have higher degrees of compliance and enable more standardised execution than analogue tests. Currently, there is a lack of recommendations for clinical evaluation of the patient's cognition in the perioperative setting, standard care usually means no cognitive assessments prior or after the surgery. There is a need to find an equivalent neuropsychological test to the ISPOCD to make it accessible and easier to implement in a clinical context for perioperative patients. This study aims to examine how healthy seniors perform on two neuropsychological tests, analogue versus digital and measure equivalency between tests with correlation analysis. METHODS AND ANALYSIS: This study will use a randomised cross-over design, including qualitative interviews regarding test experiences. Healthy participants ≥60 years of age will be eligible to participate in the study. Cognitive function will be measured by using the ISPOCD test and the Mindmore digital test. The participants will self-report depressive symptoms with the Geriatric Depression Scale-15, user experience of the digital test using a modified version of the System Usability Scale and answer questionnaires targeting their experiences after the tests. Furthermore, according to the Swedish Quality of Recovery Scale, self-reported concentration difficulties will also be measured. ETHICS AND DISSEMINATION: The study has been approved by the Swedish Ethical Review Authority (Dnr 2021-05486-01) and will follow the principles outlined in the 1964 Helsinki Declaration and its later amendments. Results from this study will be disseminated in peer-reviewed journals, at scientific conferences, and in social media. TRIAL REGISTRATION NUMBER: 2021-01095; ClinicalTrials.gov.


Assuntos
Complicações Cognitivas Pós-Operatórias , Idoso , Estudos Cross-Over , Função Executiva , Voluntários Saudáveis , Humanos , Entrevistas como Assunto , Testes Neuropsicológicos , Ensaios Clínicos Controlados Aleatórios como Assunto , Autorrelato
7.
Front Immunol ; 13: 911744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874666

RESUMO

Surgery triggers a systemic inflammatory response that ultimately impacts the brain and associates with long-term cognitive impairment. Adequate regulation of this immune surge is pivotal for a successful surgical recovery. We explored the temporal immune response in a surgical cohort and its associations with neuroimmune regulatory pathways and cognition, in keeping with the growing body of evidence pointing towards the brain as a regulator of peripheral inflammation. Brain-to-immune communication acts through cellular, humoral and neural pathways. In this context, the vagal nerve and the cholinergic anti-inflammatory pathway (CAP) have been shown to modify peripheral immune cell activity in both acute and chronic inflammatory conditions. However, the relevance of neuroimmune regulatory mechanisms following a surgical trauma is not yet elucidated. Twenty-five male patients undergoing elective laparoscopic abdominal surgery were included in this observational prospective study. Serial blood samples with extensive immune characterization, assessments of heart rate variability (HRV) and cognitive tests were performed before surgery and continuing up to 6 months post-surgery. Temporal immune responses revealed biphasic reaction patterns with most pronounced changes at 5 hours after skin incision and 14 days following surgery. Estimations of cardiac vagal nerve activity through HRV recordings revealed great individual variations depending on the pre-operative HRV baseline. A principal component analysis displayed distinct differences in systemic inflammatory biomarker trajectories primarily based on pre-operative HRV, with potiential consequences for long-term surgical outcomes. In conclusion, individual pre-operative HRV generates differential response patterns that associate with distinct inflammatory trajectories following surgery. Long-term surgical outcomes need to be examined further in larger studies with mixed gender cohorts.


Assuntos
Inflamação , Nervo Vago , Frequência Cardíaca/fisiologia , Humanos , Imunidade Inata , Inflamação/metabolismo , Masculino , Estudos Prospectivos , Nervo Vago/fisiologia
8.
Scand J Immunol ; : e13195, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652743

RESUMO

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes. It contains a presentation of the response evoked by different immune and inflammatory cells in defined naïve patient-groups as they presented with moderate and severe COVID-19 disease. The present Resource Article describes how the Karolinska KI/K COVID-19 Immune Atlas allow scientists, students, and other interested parties to freely explore the nature of the immune response towards human SARS-CoV-2 infection in an online setting.

9.
Acta Anaesthesiol Scand ; 66(6): 759-766, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332517

RESUMO

BACKGROUND: This is the study plan of the Karolinska NeuroCOVID study, a study of neurocognitive impairment after severe COVID-19, relating post-intensive care unit (ICU) cognitive and neurological deficits to biofluid markers and MRI. The COVID-19 pandemic has posed enormous health challenges to individuals and health-care systems worldwide. An emerging feature of severe COVID-19 is that of temporary and extended neurocognitive impairment, exhibiting a myriad of symptoms and signs. The causes of this symptomatology have not yet been fully elucidated. METHODS: In this study, we aim to investigate patients treated for severe COVID-19 in the ICU, as to describe and relate serum-, plasma- and cerebrospinal fluid-borne molecular and cellular biomarkers of immune activity, coagulopathy, cerebral damage, neuronal inflammation, and degeneration, to the temporal development of structural and functional changes within the brain as evident by serial MRI and extensive cognitive assessments at 3-12 months after ICU discharge. RESULTS: To date, we have performed 51 3-month follow-up MRIs in the ICU survivors. Of these, two patients (~4%) have had incidental findings on brain MRI findings requiring activation of the Incidental Findings Management Plan. Furthermore, the neuropsychological and neurological examinations have so far revealed varying and mixed patterns. Several patients expressed cognitive and/or mental concerns and fatigue, complaints closely related to brain fog. CONCLUSION: The study goal is to gain a better understanding of the pathological mechanisms and neurological consequences of this new disease, with a special emphasis on neurodegenerative and neuroinflammatory processes, in order to identify targets of intervention and rehabilitation.


Assuntos
COVID-19 , Pandemias , Biomarcadores , Cuidados Críticos , Humanos , Sobreviventes/psicologia
10.
Eur J Immunol ; 52(3): 503-510, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34837225

RESUMO

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19. We performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized COVID-19 patients and integrated results with large-scale proteomic and immunology data to capture multiorgan system perturbations. More than half of the detected metabolic alterations in COVID-19 were driven by patient-specific confounding factors ranging from comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-specific metabolic imprint was defined which, over time, underwent a switch in response to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the COVID-19 metabolome with clinical, cellular, molecular, and immunological severity scales further revealed a network of metabolic trajectories aligned with multiple pathways for immune activation, and organ damage including neurological inflammation and damage. Altogether, this resource refines our understanding of the multiorgan system perturbations in severe COVID-19 patients.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Metaboloma/imunologia , SARS-CoV-2 , Adolescente , Adulto , Idoso , COVID-19/complicações , Estudos de Casos e Controles , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Especificidade de Órgãos , Pandemias , Fenótipo , Proteômica , Índice de Gravidade de Doença , Adulto Jovem
11.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34548411

RESUMO

Since the outset of the COVID-19 pandemic, increasing evidence suggests that the innate immune responses play an important role in the disease development. A dysregulated inflammatory state has been proposed as a key driver of clinical complications in COVID-19, with a potential detrimental role of granulocytes. However, a comprehensive phenotypic description of circulating granulocytes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients is lacking. In this study, we used high-dimensional flow cytometry for granulocyte immunophenotyping in peripheral blood collected from COVID-19 patients during acute and convalescent phases. Severe COVID-19 was associated with increased levels of both mature and immature neutrophils, and decreased counts of eosinophils and basophils. Distinct immunotypes were evident in COVID-19 patients, with altered expression of several receptors involved in activation, adhesion, and migration of granulocytes (e.g., CD62L, CD11a/b, CD69, CD63, CXCR4). Paired sampling revealed recovery and phenotypic restoration of the granulocytic signature in the convalescent phase. The identified granulocyte immunotypes correlated with distinct sets of soluble inflammatory markers, supporting pathophysiologic relevance. Furthermore, clinical features, including multiorgan dysfunction and respiratory function, could be predicted using combined laboratory measurements and immunophenotyping. This study provides a comprehensive granulocyte characterization in COVID-19 and reveals specific immunotypes with potential predictive value for key clinical features associated with COVID-19.


Assuntos
COVID-19/imunologia , Granulócitos/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/fisiopatologia , Granulócitos/citologia , Humanos , Imunidade Inata , Imunofenotipagem , Contagem de Leucócitos , Pulmão/fisiopatologia , Modelos Biológicos , Escores de Disfunção Orgânica , SARS-CoV-2 , Índice de Gravidade de Doença
12.
Respir Physiol Neurobiol ; 294: 103746, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34302993

RESUMO

The molecular mechanisms of obstructive sleep apnea (OSA), in particular the gene expression patterns in whole blood of patients with OSA, can shed more light on the underlying pathophysiology of OSA and suggest potential biomarkers. In the current study, we have enrolled thirty patients with untreated moderate-severe OSA together with 20 BMI, age, and sex-matched controls and 15 normal-weight controls. RNA-sequencing of whole blood and home sleep apnea testing were performed in the untreated state and after three and twelve months of continuous positive airway pressure (CPAP) treatment. Analysis of the whole blood transcriptome of the patients with OSA revealed a unique pattern of differential expression with a significant number of downregulated immune-related genes including many heavy and light chain immunoglobulins and interferon-inducible genes. This was confirmed by the gene ontology analysis demonstrating enrichment with the biological processes associated with various immune functions. Expression of these genes was recovered after three months of CPAP treatment. After 12 months of CPAP treatment, the overall gene expression profile returns to the initial, untreated level. In addition, we have confirmed the importance of choosing BMI-matched controls as a reference group as opposed to normal-weight healthy individuals based on the significantly different gene expression signatures between these two groups.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Avaliação de Resultados em Cuidados de Saúde , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/terapia , Transcriptoma/fisiologia , Adulto , Idoso , Índice de Massa Corporal , Feminino , Ontologia Genética , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA , Fatores de Tempo
13.
Clin Transl Immunology ; 10(7): e1306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257967

RESUMO

OBJECTIVES: Humoral and cellular immunity to SARS-CoV-2 following COVID-19 will likely contribute to protection from reinfection or severe disease. It is therefore important to characterise the initiation and persistence of adaptive immunity to SARS-CoV-2 amidst the ongoing pandemic. METHODS: Here, we conducted a longitudinal study on hospitalised moderate and severe COVID-19 patients from the acute phase of disease into convalescence at 5 and 9 months post-symptom onset. Utilising flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune responses during and after human SARS-CoV-2 infection. RESULTS: During acute COVID-19, we observed an increase in germinal centre activity, a substantial expansion of antibody-secreting cells and the generation of SARS-CoV-2-neutralising antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralising antibody titres as well as robust specific memory B cell responses and polyfunctional T cell responses at 5 and 9 months after symptom onset in both moderate and severe COVID-19 patients. CONCLUSION: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2-specific immunological memory in hospitalised COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

14.
Acta Anaesthesiol Scand ; 65(9): 1276-1284, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34028012

RESUMO

BACKGROUND: Apnoeic oxygenation using Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE) during general anaesthesia prolongs the safe apnoeic period. However, there is a gap of knowledge how THRIVE-induced hyperoxia and hypercapnia impact vital organs. The primary aim of this randomised controlled trial was to characterise oxidative stress and, secondary, vital organ function biomarkers during THRIVE compared to mechanical ventilation (MV). METHODS: Thirty adult patients, American Society of Anesthesiologists (ASA) 1-2, undergoing short laryngeal surgery under general anaesthesia were randomised to THRIVE, FI O2 1.0, 70 L min-1 during apnoea or MV. Blood biomarkers for oxidative stress, malondialdehyde and TAC and vital organ function were collected (A) preoperatively, (B) at procedure completion and (C) at PACU discharge. RESULTS: Mean apnoea time was 17.9 (4.8) min and intubation to end-of-surgery time was 28.1 (12.8) min in the THRIVE and MV group, respectively. Malondialdehyde increased from 11.2 (3.1) to 12.7 (3.1) µM (P = .02) and from 9.5 (2.2) to 11.6 (2.6) µM (P = .003) (A to C) in the THRIVE and MV group, respectively. S100B increased from 0.05 (0.02) to 0.06 (0.02) µg L-1 (P = .005) (A to C) in the THRIVE group. No increase in TAC, CRP, leukocyte count, troponin-T, NTproBNP, creatinine, eGFRcrea or NSE was demonstrated during THRIVE. CONCLUSION: While THRIVE and MV was associated with increased oxidative stress, we found no change in cardiac, inflammation or kidney biomarkers during THRIVE. Further evaluation of stress and inflammatory response and cerebral and cardiac function during THRIVE is needed.


Assuntos
Insuflação , Administração Intranasal , Adulto , Manuseio das Vias Aéreas , Biomarcadores , Humanos , Estresse Oxidativo , Respiração Artificial
15.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33479167

RESUMO

Dendritic cells (DCs) and monocytes are crucial mediators of innate and adaptive immune responses during viral infection, but misdirected responses by these cells may contribute to immunopathology. Here, we performed high-dimensional flow cytometry-analysis focusing on mononuclear phagocyte (MNP) lineages in SARS-CoV-2-infected patients with moderate and severe COVID-19. We provide a deep and comprehensive map of the MNP landscape in COVID-19. A redistribution of monocyte subsets toward intermediate monocytes and a general decrease in circulating DCs was observed in response to infection. Severe disease coincided with the appearance of monocytic myeloid-derived suppressor cell-like cells and a higher frequency of pre-DC2. Furthermore, phenotypic alterations in MNPs, and their late precursors, were cell-lineage-specific and associated either with the general response against SARS-CoV-2 or COVID-19 severity. This included an interferon-imprint in DC1s observed in all patients and a decreased expression of the coinhibitory molecule CD200R in pre-DCs, DC2s, and DC3 subsets of severely sick patients. Finally, unsupervised analysis revealed that the MNP profile, alone, pointed to a cluster of COVID-19 nonsurvivors. This study provides a reference for the MNP response to SARS-CoV-2 infection and unravels mononuclear phagocyte dysregulations associated with severe COVID-19.


Assuntos
COVID-19/imunologia , Sistema Fagocitário Mononuclear/imunologia , SARS-CoV-2/imunologia , Adulto , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Citocinas/imunologia , Células Dendríticas/imunologia , Feminino , Humanos , Interferons/imunologia , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Índice de Gravidade de Doença , Suécia
16.
Front Immunol ; 12: 824696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116043

RESUMO

Surgical interventions rapidly trigger a cascade of molecular, cellular, and neural signaling responses that ultimately reach remote organs, including the brain. Using a mouse model of orthopedic surgery, we have previously demonstrated hippocampal metabolic, structural, and functional changes associated with cognitive impairment. However, the nature of the underlying signals responsible for such periphery-to-brain communication remains hitherto elusive. Here we present the first exploratory study that tests the hypothesis of extracellular vesicles (EVs) as potential mediators carrying information from the injured tissue to the distal organs including the brain. The primary goal was to investigate whether the cargo of circulating EVs after surgery can undergo quantitative changes that could potentially trigger phenotypic modifications in the target tissues. EVs were isolated from the serum of the mice subjected to a tibia surgery after 6, 24, and 72 h, and the proteome and miRNAome were investigated using mass spectrometry and RNA-seq approaches. We found substantial differential expression of proteins and miRNAs starting at 6 h post-surgery and peaking at 24 h. Interestingly, one of the up-regulated proteins at 24 h was α-synuclein, a pathogenic hallmark of certain neurodegenerative syndromes. Analysis of miRNA target mRNA and corresponding biological pathways indicate the potential of post-surgery EVs to modify the extracellular matrix of the recipient cells and regulate metabolic processes including fatty acid metabolism. We conclude that surgery alters the cargo of circulating EVs in the blood, and our results suggest EVs as potential systemic signal carriers mediating remote effects of surgery on the brain.


Assuntos
Biomarcadores , Vesículas Extracelulares/metabolismo , Ferimentos e Lesões/metabolismo , Animais , Fracionamento Químico , Cromatografia Líquida , Modelos Animais de Doenças , Suscetibilidade a Doenças , Vesículas Extracelulares/ultraestrutura , Camundongos , MicroRNAs/genética , Proteoma , Proteômica/métodos , RNA Mensageiro/genética , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Espectrometria de Massas em Tandem , Ferimentos e Lesões/sangue , Ferimentos e Lesões/etiologia
17.
Br J Anaesth ; 126(1): 238-244, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33036760

RESUMO

BACKGROUND: The molecular actions underlying the clinical effects of inhaled anaesthetics such as sevoflurane and isoflurane are not fully understood. Unexpected observations in positron emission tomography (PET) studies with [11C]AZD9272, a metabotropic glutamate receptor 5 (mGluR5) radioligand with possible affinity for monoamine oxidase-B (MAO-B), suggest that its binding is sensitive to anaesthesia with sevoflurane. The objective of the present study was to assess the effects of sevoflurane anaesthesia on the binding of [11C]AZD9272 and of [11C]L-deprenyl-D2, a radioligand selective for MAO-B in non-human primates (NHPs). METHODS: Altogether, 12 PET measurements were conducted with a high-resolution research tomograph using the ligands [11C]AZD9272 or [11C]L-deprenyl-D2 in six cynomolgus monkeys anaesthetised with sevoflurane or ketamine/xylazine. RESULTS: The specific binding of [11C]AZD9272 and [11C]L-deprenyl-D2 was markedly reduced during anaesthesia with sevoflurane compared with ketamine/xylazine. The reduction was 80-90% (n=3) for [11C]AZD9272 and 77-80% (n=3) for [11C]L-deprenyl-D2. CONCLUSIONS: Sevoflurane anaesthesia inhibited radioligand binding to MAO-B in the primate brain. The observation of lower MAO-B binding at clinically relevant concentrations of sevoflurane warrants further exploration of the potential role of MAO-B related mechanisms in regulation of systemic blood pressure during anaesthesia.


Assuntos
Anestésicos Inalatórios/farmacologia , Encéfalo/efeitos dos fármacos , Monoaminoxidase/efeitos dos fármacos , Sevoflurano/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Macaca fascicularis , Modelos Animais , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ensaio Radioligante/métodos
18.
Acta Anaesthesiol Scand ; 65(1): 76-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32892337

RESUMO

BACKGROUND: Information on characteristics and outcomes of intensive care unit (ICU) patients with COVID-19 remains limited. We examined characteristics, clinical course and early outcomes of patients with COVID-19 admitted to ICU. METHODS: We included all 260 patients with COVID-19 admitted to nine ICUs at the Karolinska University Hospital (Stockholm, Sweden) between 9 March and 20 April 2020. Primary outcome was in-hospital mortality among patients with definite outcomes (discharged from ICU or death), as of 30 April 2020 (study end point). Secondary outcomes included ICU length of stay, the proportion of patients receiving mechanical ventilation and renal replacement therapy, and hospital discharge destination. RESULTS: Of 260 ICU patients with COVID-19, 208 (80.0%) were men, the median age was 59 (IQR 51-65) years, 154 (59.2%) had at least one comorbidity, and the median duration of symptoms preceding ICU admission was 11 (IQR 8-14) days. Sixty-two (23.8%) patients remained in ICU at study end point. Among the 198 patients with definite outcomes, ICU length of stay was 12 (IQR, 6-18) days, 163 (82.3%) received mechanical ventilation, 28 (14.1%) received renal replacement therapy, 60 (30.3%) died, 62 (31.3%) were discharged home, 47 (23.7%) were discharged to ward, and 29 (14.6%) were discharged to another health care facility. On multivariable logistic regression analysis, older age and admission from the emergency department was associated with higher mortality. CONCLUSION: This study presents detailed data on clinical characteristics and early outcomes of consecutive patients with COVID-19 admitted to ICU in a large tertiary hospital in Sweden.


Assuntos
COVID-19/terapia , Cuidados Críticos/estatística & dados numéricos , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Comorbidade , Determinação de Ponto Final , Feminino , Mortalidade Hospitalar , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Pacientes , Terapia de Substituição Renal , Respiração Artificial/estatística & dados numéricos , Estudos Retrospectivos , Suécia , Centros de Atenção Terciária , Resultado do Tratamento
19.
Br J Anaesth ; 126(2): 467-476, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33183737

RESUMO

BACKGROUND: Postoperative neurocognitive decline is a frequent complication in adult patients undergoing major surgery with increased risk for morbidity and mortality. The mechanisms behind cognitive decline after anaesthesia and surgery are not known. We studied the association between CSF and blood biomarkers of neuronal injury or brain amyloidosis and long-term changes in neurocognitive function. METHODS: In patients undergoing major orthopaedic surgery (knee or hip replacement), blood and CSF samples were obtained before surgery and then at 4, 8, 24, 32, and 48 h after skin incision through an indwelling spinal catheter. CSF and blood concentrations of total tau (T-tau), neurofilament light, neurone-specific enolase and amyloid ß (Aß1-42) were measured. Neurocognitive function was assessed using the International Study of Postoperative Cognitive Dysfunction (ISPOCD) test battery 1-2 weeks before surgery, at discharge from the hospital (2-5 days after surgery), and at 3 months after surgery. RESULTS: CSF and blood concentrations of T-tau, neurone-specific enolase, and Aß1-42 increased after surgery. A similar increase in serum neurofilament light was seen with no overall changes in CSF concentrations. There were no differences between patients having a poor or good late postoperative neurocognitive outcome with respect to these biomarkers of neuronal injury and Aß1-42. CONCLUSIONS: The findings of the present explorative study showed that major orthopaedic surgery causes a release of CSF markers of neural injury and brain amyloidosis, suggesting neuronal damage or stress. We were unable to detect an association between the magnitude of biomarker changes and long-term postoperative neurocognitive dysfunction.


Assuntos
Amiloidose/líquido cefalorraquidiano , Artroplastia de Quadril/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas/líquido cefalorraquidiano , Complicações Cognitivas Pós-Operatórias/etiologia , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/complicações , Amiloidose/diagnóstico , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico , Cognição , Feminino , Humanos , Masculino , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Fosfopiruvato Hidratase/líquido cefalorraquidiano , Complicações Cognitivas Pós-Operatórias/líquido cefalorraquidiano , Complicações Cognitivas Pós-Operatórias/diagnóstico , Complicações Cognitivas Pós-Operatórias/psicologia , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Proteínas tau/líquido cefalorraquidiano
20.
Clin Transl Immunology ; 9(12): e1224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343897

RESUMO

OBJECTIVES: The role of innate lymphoid cells (ILCs) in coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is unknown. Understanding the immune response in COVID-19 could contribute to unravel the pathogenesis and identification of treatment targets. Here, we describe the phenotypic landscape of circulating ILCs in COVID-19 patients and identified ILC phenotypes correlated to serum biomarkers, clinical markers and laboratory parameters relevant in COVID-19. METHODS: Blood samples collected from moderately (n = 11) and severely ill (n = 12) COVID-19 patients, as well as healthy control donors (n = 16), were analysed with 18-parameter flow cytometry. Using supervised and unsupervised approaches, we examined the ILC activation status and homing profile. Clinical and laboratory parameters were obtained from all COVID-19 patients, and serum biomarkers were analysed with multiplex immunoassays. RESULTS: Innate lymphoid cells were largely depleted from the circulation of COVID-19 patients compared with healthy controls. Remaining circulating ILCs revealed decreased frequencies of ILC2 in severe COVID-19, with a concomitant decrease of ILC precursors (ILCp) in all patients, compared with controls. ILC2 and ILCp showed an activated phenotype with increased CD69 expression, whereas expression levels of the chemokine receptors CXCR3 and CCR4 were significantly altered in ILC2 and ILCp, and ILC1, respectively. The activated ILC profile of COVID-19 patients was associated with soluble inflammatory markers, while frequencies of ILC subsets were correlated with laboratory parameters that reflect the disease severity. CONCLUSION: This study provides insights into the potential role of ILCs in immune responses against SARS-CoV-2, particularly linked to the severity of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...